
MATHEMATICS OF COMPUTATION
VOLUME 45. NUMBER 172
OCTOBER 1985. PAGES 471-485

A Stable Algorithm for Updating
Triangular Factors Under a Rank One Change

By R. Fletcher and S. P. J. Matthews

Abstract. An algorithm is presented for updating the LU factors of an n x n matrix A, when A
is changed by a matrix of rank one. The algorithm is based on the repeated use of triangular
operations, and stability is obtained by allowing both row and column pivoting. The cost of
the algorithm is approximately proportional to the maximum permitted depth for the pivot
search. For well-conditioned matrices a maximum depth of 3 is sufficient to ensure stability.
For substantially rank deficient matrices it is theoretically possible that pivots of any depth
may be required, but in practice we find that a value of 5 is adequate. We suggest a pivot
strategy, based on minimizing a growth bound, which penalizes deep pivots and imposes a
maximum depth of pivot through a default value.

On well-behaved problems the asymptotic cost of the update is observed to be approxi-
mately 2.6n2 compared with 8n2 (or worse) for updating orthogonal factors. Given the
accuracy obtained by the new algorithm, we feel that there are many applications in which the
lower cost of triangular factors can be exploited. Comparison with ab initio factorization
indicates that for n > 10 updating triangular factors is advantageous.

1. Introduction. When solving a large system of nonlinear equations using quasi-
Newton or secant techniques the solution of a sytem of equations

(1.1) Ax = b, A E RnXn x b E Rtl

is required at each stage. This problem arises not only in its own right but also as a
subproblem in methods for the solution of ordinary differential equations. The
matrix A is in general unsymmetric and is updated on each iteration using a rank
one change. On the grounds of efficiency it is desirable to calculate factors for just
the initial matrix A, and subsequently to update the relevant factors rather than
recalculating them ab initio. The methods discussed in this paper for performing this
update all generalize to the more general problem A E Rnx m, m * n.

When problem (1.1) arises in the above context it has become usual to use an
orthogonal (QR) factorization of the matrix A which can be updated using tech-
niques described by Daniel, et al. [2] and Gill, et al. [4]. The disadvantage of this
approach is that the QR factors are more expensive to calculate than triangular LU
factors, and also the updating procedure is quite expensive. Alternatively, given the
LU factors of a matrix A, it is possible to update these factors using an algorithm
described by Bennett [1]. In this algorithm there is no pivoting and, hence, if the
updated matrix does not possess triangular factors, then the method will fail. Even if

Received January 30, 1984; revised April 9, 1985.
1980 Mathematics Subject Classification. Primary 65F05.
Key words and phrases. Rank one update, LU factors, triangular factors, stability.

(<'1985 American Mathematical Society

0025-5718/5 $1.0() + $.25 per page

471

472 R. FLETCHER AND S. P. J. MATTHEWS

the algorithm does not fail it is possible that the updated factors may grow rapidly,
which implies that the round-off errors are magnified so that the algorithm is
potentially unstable in practice.

In this paper we present a method for updating the LU factors which uses both
column and row pivoting to mainaiin stability whilst- to a large extent retvaining- t-he-
efficiency of Bennett's method. In Section 2 we show how Bennett's algorithm is
essentially equivalent to the reduction of a product of two Hessenberg matrices into
a product of two triangular matrices, using elementary triangular operations. We
then generalize this technique so that it will reduce general matrix products to the
desired form. This new algorithm is then combined with permutation operators to
obtain an algorithm which updates triangular factors using elementary triangular
and permutation operators. In Section 3 we relate the problem of pivot selection to
that of error growth. We derive a quantity that gives an indication of the growth
associated with the choice of any particular pivot. This quantity is used in Section 4
as the basis of a heuristic criterion for pivot selection which aims to limit error
growth whilst discouraging the choice of pivots which disrupt the matrix structure. A
selection of numerical experiments are described to choose parameters for this test
and to illustrate the properties of the algorithm. These experiments indicate that the
algorithm performs the required updates at a considerable saving compared with
either updating the equivalent QR factors or recalculating the factors using Gaussian
elimination, whilst at the same time maintaining stability and restricting error
growth.

2. The Rank One Update. The rank one change to a matrix A may be written

(2.1) A* = A + xyT, A*, A E Rnxn, x,y E RI,

and we assume that we have the representation of A

n

(2.2) PAQT = LOU= O iuOT
i=1

where Lo = [,1?,. . . ,1In] is lower triangular, U0 = [u, u . ..,uT is upper triangu-
lar and P and- Q are permutation matrices. Note that neither Lo nor U0 is required
to be unit triangular, so there is a small amount of redundant information in this
representation. In the case when these factors have been calculated using Gaussian
elimination with partial pivoting, Q is the identity matrix and Lo is a unit lower
triangular matrix. Observe that (2.2) may be used to write A* as the product of two
Hessenberg matrices

n+1

(2.3) PA*QT - L0U0 + PxyTQT = LlU1 = 9 liui
i=1

where L1 = [Px: Lo] and U1 = [Qy: UOTIT.

The aim of the algorithm is to restore this representation of A* to the triangular
form

(2.4) P*A*Q*T = L*U*

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 473

Initially, we consider just the first stage of the transformation in which we obtain the
first row of L*, and column of U*, by eliminating the elements 1'2 and u'1.
(Subsequently, we omit the superscript 1 for clarity.) As in Fletcher and Matthews
[3], we can eliminate these two elements by considering the first two terms of the
summation in (2.3) and using two elementary triangular operations. These two
operations can be combined to give

[i+ ,ifl [Uj+,Ufl T = [1 ,2][1 U2] 11912]BB1 [Ul, U 2 9

where B is the matrix

(2.5) B= Ia] 0 1' 21 1] 0 /11g12 1] [iJl

and a = lull + 1l2U21 = (PA*QT)11. Thus the two columns of L and UT are
replaced by new quantities (superscripted +) defined by

(2.6) [11,1+2] = [111j2]B

and

(2.7) [|= B1 []

If (PA*QT)ll = 0, then the operation will fail, and if 1i1 = 0, we will have to
interchange the two vectors 11 +-* 12 and ul +-* u2 before carrying out the operation.
Assuming that a = 0 the new vectors 1+ and u+ are the first row and column of L*
and U* respectively, and we define reduced matrices L2, U2T E R 1n-l)Xn by
stripping, off the- first rQw an i cinmni of- hnth ib anit It+. whbirt[L+=
1 2 3,.. iJ9 etc. These new matrices have the same form as L1 and U1, and so

by repeating the above procedure we can calculate the new factors L* and U *. This
algorithm is essentially equivalent to that proposed by Bennett.

The reason why this approach can fail is that after the rank one change the pivot
element (PA*QT)ll may be zero, so that the L*U * factors do not exist. It is therefore
necessary to introduce some form of pivoting into the algorithm so as to bring a
substantial element into this leading position. This may cause serious disruption to
the Hessenberg structure of L1 and U1. If we wish the algorithm to work for rank
deficient matrices it must be able to handle cases such as

(2.8) A* = I -eleT
in which the entire first row and column of A* are zero. In this case it is clear that
neither row nor column pivoting will be sufficient on its own. If we assume that A is
full rank then the leading 2 x 2 submatrix of PAQT has rank 2, and so the leading
2 x 2 submatrix of PA*QT has at least rank 1 and must contain at least one nonzero
element which is a feasible pivot element. Therefore, in this case only interchanges in
row/column 1 +-* 2 are required and the amount of disruption is small. However, in
general we may wish to deal with singular or near singular matrices for which it is
possible that all four of these potential pivots lead to large error growth. Therefore,
we must allow the algorithm to select deeper pivots when necessary to retain
stability.

474 R. FLETCHER AND S. P. J. MATTHEWS

It is clear that we cannot in general expect to retain the Hessenberg structure of L1
and U'. Our next observation is, therefore, to show how a general matrix product
A = XY, (X, yT E= RnX(n+l)) can be reduced to the triangular form PAQT = LU.
Clearly, we need only describe the first stage in which off-diagonal elements in the
first row of X, and first column of Y, are zeroed. We shall require two types of
pivoting: externalpivoting A - PAQT in which we change the external permutation
matrices which are associated with the representation of A, and internal piloting
A = XY -- XR-'RY in which the external permutation is unchanged but the col-
umns of X, and the corresponding rows of Y, are rearranged. By: etal pvotin
we can ensure that the pivot element (PAQT)l, is substantial, and by internal
pivoting that

(2.9) xlYll= > lxliyill i= 2,... ,n + 1.

To simplify the presentation we will assume that all interchanges have been done
previously and hence no pivots are necessary.

The first step is to use Xl, to eliminate all other nonzero elements in the first row
of X. This is equivalent to the matrix operation

X= XT1,

where

X12 X13 X1,n+l i'
X11 Xll. X1

(2.10) T= 1

1~~~~~~

To retain the same matrix product we must carry out the inverse operations on the Y
matrix giving rise to a matrix Y= Ti-lY. The first column of. Y is
(All/X, X21, Y,,. . .,)T and the second step is to use Yll to eliminate the
other nonzero elements in this column. This can be written as the matrix operation

Y+= T2Y,

where

1
XlY2_ 1

All

(2.11) T2= All

11ln+ll1 1

Again the inverse operations must be carried out on X to obtain X+= XT241. We can
now combine the two steps into one matrix operation

X+=XB, Y+=B-1X,

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 475

where

Xlyll X12 Xln+1

All Xi, X11

Xl 1Y21 1

(2.12) B= TT21 All.

XllYn+l,1 1

All

It can be seen that if any of the positions, X1j or YiT already contains a zero, then the
corresponding columns or rows in B will be columns or rows of the identity matrix.
This result also holds for B-1, so those rows and columns of X or Y are left
unchanged. We now strip off the first row and column of X+ and Y+ and repeat the
above operations inductively to yield the triangular form PAQT = LU.

We now return to the main problem to consider the effect of allowing external
pivoting in the algorithm. At the start of the k th stage we have the reduced matrix

(2.13) Ak = LkUk

in which the matrices Lk and Uk typically have the form
qk

Pk
IX xxxx

(2.14) X X X x x x x x |

xxxxxxx IIx

where pk and qk are determined by the fill in during the previous stages of the
algorithm. The first step of the general algorithm described above is to use external
pivoting to bring a large element of Ak (indexed (rk, Sk) say) to the (1,1) pivot
position. If r k P Ok and Sk < q k, then no disruption of the structure occurs.
However, if rk > pk or sk > qk, then more fill in will occur. To illustrate this,
consider the case that (rk, sk) = (5,4) in which case, after the external pivoting, the
structure becomes

xx x x xx 1[xx xx xx x1

(215) xxxx lxxxxxxx x x xx x X x xx
(2.15) x x x x

x x X x x x xx

The next step is to use internal pivoting to ensure that (2.9) holds. Let the largest
product 11iuil occur in elements. If j < min(pk, qk) + 1 then no essential change in
structure occurs. In this case, the final step of the current stage is to operate with the

476 R. FLETCHER AND S. P. J. MATTHEWS

B matrix to introduce the required zeros. In our example the B matrix has the form

1k uk 1k 1k ? 1 151 U14 152 56

1k

(2.16) B=

1k uk~~~~~

o0 14

o 1
(using the indexing for Lk and Uk prior to external pivoting and assuming no
internal pivoting). The updated factors have the form

x x x x + + O X X X X X X

(2.17) xxxx?+ O???XXX

xx xx x xx x x
.~x xx xx x xx xxL

where ' +' denotes fill in. After removing the first row and column of these matrices,
we obtain reduced matrices Lk +lUk+l for the next stage. In general, the values of
p k+ 1 and q k+1 for the next iteration are given by
(2.18) pk~ = max(pk, rk) -1, q k?1 = max(qk sk) -1.

If]j> min(pk, qk) + 1 in the above, then a similar process takes place, but it is
possible to arrange the computation to reduce the size of k + 1 or q k+ 1 We have
illustrated cyclic pivoting, but it is clear that the same results may be obtained using
interchanges which require less rearrangement. In practice, pivot depth is small and
the choice is unlikely to be critical.

Finally, we consider the operational cost of this updating algorithm. If there is no
pivoting, then the entire update takes 2n2 + 0(n) multiplications and additions. If
the pivot depth is at most rm k i c, sok r c, then the cost is no greater than
2cn2 + 0(n) multiplications and additions. Thus, it can be seen that the cost of the
update increases with the depth of pivot chosen but not very rapidly.

3. Pivot Choice and Stabilit. The algorithm described is only of practical use if it
performs the desired rank one update in some modest multiple of n2 operations. In
this section we derive criteria for pivot selection which will prove satisfactory not
only when A* is well-conditioned, but also when A* loses rank to any extent.
Consider the application of our method in exact arithmetic to a problem for which
rank(A) = k <sn. Because we always select nonzero pivot elements, it follows that
the reduced matrix Ak+l is zero and only columns 1 through k of L and UT contain
significant information. If the matrix is nearly rank-deficient, then after k stages the

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 477

reduced matrix becomes small relative to A*, which is a desirable property for
stability purposes. Thus, we are motivated to choose pivots which are large in a
certain sense. Unfortunately, it is not possible to judge whether a pivot is large
without examining the whole reduced matrix (complete pivoting),which is unduly
expensive. Therefore, we aim to examine relatively few pivots to find one which gives
an acceptable bound on the error growth.

Our first step, therefore, is to derive a bound on error growth. Because the B
matrix in (2.16) can be written as the product of simple triangular operators, the
error analysis results obtained for such operators in [3] are relevant to this problem.
The main result is that the error growth is proportional to growth in terms of the
form l 1 u I at any stage of the calculation. For any potential choice of B we have

(3.1) L+= LkB U+= B-lUk.

Therefore, a bound on any term Il, u +I is given by

(3.2) t=1 p=l
m m

max ltql max |B-1|) E E 1itupil Vq,
t P qP

t=1 p=1

where we suppress superscript k for simplicity, and write m = n - k + 2. We
therefore aim to choose a pivot element for which the quantity maxq(oq) is small,
where

(3.3) q = max (Bt,) max B|).

This is the product of the maximum modulus elements in column q of B, and row q
of B -1. The quantity 0q is cheap to calculate, and though it does not give a
particularly strict bound on growth, it does work well in practice.

We now consider how maxq(oq) can be calculated. To simplify the presentation
we write any possible pivot element as

(3.4) a =Ak

and we can assume that internal pivoting is unnecessary so that

(3.5) llrlulsI > IlriUisI, i = 2,... , m.

From (2.16) it follows that

r2 r3 ..rm

irl irl irl

riU2s -r2U 2s lr3U2s lrmU2s

a rs a rs a rs a rs

(3.6) B1 = l _ l3s _r2U3s 1 lr3U3s _rmU3s
a rs a rs a rs a rs

IriUms r2Ums r3Ums 1 rm ms

a rs a rs a rs a rs

478 R. FLETCHER AND S. P. J. MATTHEWS

and hence for q = 1,

(3.7) 01 = la |lmax(Ilrp) max(IutI),

and for q> 1,

(3.8) = max(1, rq lmaxmax s 1 -lr? |s

For q > 1 we can express the right-hand side of (3.8) as a maximum of four terms
which we will consider separately:

(i) 1 max l|a \< 0l

(rq x rp qs | rq qs | rp Uls
(ii) -max- maxs <ars

'rl ~q ars / ril Pq a /r

(3.9) (iii) 1*1-iq q | 1 + 01, and
ars

(iv) | q | |1 _rq qs ||rqs| ars | rq U qs lrqUis (iv)
irl a ars ? rs irlUls IrlUls ars

<, (min(pk+ , qk+l) + 2)01,

where we have used the fact that

m min(pk+l, qk+l)+ 1

(3.10) ~~~~larsl = E 'r~i =ru (3.10) i=1 || 1

< (min(pk+ q k+1) + 1) lrlUlsI

Therefore, it follows that

(3.11) max (Gq) < max(1 + 91, (min(pk+I, qk+1) + 2)01)
q

and we can deduce that in all important cases (i.e., large growth)

(3.12) max(Gq) < co1,
q

where c is some small integer. We therefore use 91 to give an indication of the growth
incurred by the choice of a particular pivot. From (3.7) it is clear that 91 is a function
of r and s, so subsequently we suppress the subscript 1 and write

(3.13) O(r, s) = 1| max lirpi max(Jutsj). larsi m (lrjmxIt I)

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 479

We now have to decide how to use O(r, s) to choose a pivot element ars. If we
merely search for the element with smallest associated 0(r, s), this may give rise to a
permutation which severely disrupts the structure of the factors and we lose
efficiency. We therefore require a strategy which considers 'shallow' pivots first and
only moves on to deeper pivots if no 'satisfactory' pivot is found. The criterion for
accepting pivots should become less severe as depth increases. One particular
strategy is suggested in the next section, where it is shown that the algorithm is
relatively insensitive to the search pattern used.

In choosing O(r, s) we have so far restricted ourselves to the particular B matrix
given in (2.12), derived from elementary operators. It is also possible to eliminate the
desired elements by using a more general family of B matrices. The conditions that a
suitable matrix must satisfy are

(3.14) [X11, X12,...* 9Xln+l]B = [XA,o,. ...,o]

and

(3.15) B-1[Y11 Y21... 9y]T [y+0 ..0]T

Because the right-hand sides of both (3.14) and (3.15) are multiples of the first row
and column of the identity matrix, and B-1B = I, we can deduce that the first row
of B-1 must be 1/Xlj[X11, X12,. . . Xl n+l] and the first column of B must be
1/YAI[Y11, Y21,. ... , Yn+HV. We can therefore calculate 9(r, s) for the general matrix
using the fact that Xi+, Yl = ars. This yields

(3.16) 0(r, s) = I+1A+1max(XitI) max (Iy,,) = 1 max(IXtIl)max (Yp1,l),
Xi+, Y1+1

M ax
P larsi t

and if we take X = Lk and Y = Uk, we obtain the same 0(r, s) as for the
elimination operator. Thus 0(r, s) is independent of the choice of B matrix. This
suggests that it is unlikely that any advantage in stability can be obtained by going
to a more general family of B matrices, as against the more efficient triangular
operator formulation of Section 2.

4. Numerical Results and Discussion. All the results in this section have been
calculated using a DEC 10 computer with relative precision e = 2-27 - 7.510-9 . To
test the algorithm we have produced a set of test problems of the following form. We
take a "target matrix" and alter it directly using a series of m random rank one
changes generated using random numbers in [-1,1]. This altered matrix is regarded
as the "initial matrix" and its triangular factors are calculated using Gaussian
elimination with partial pivoting. Then we repeat the original series of rank one
changes with the sign reversed, and update the factors subject to these changes using
the algorithm in Section 2. After this calculation is completed, we obtain factors of
the target matrix in the form (2.4). We consider four classes of target matrix, which
are:

(i) Random rank k matrix-This is a matrix constructed as the sum of k < n rank
one terms generated using random numbers in [-1,1]. Results for this class of matrix
are given as the average of 10 different problems.

480 R. FLETCHER AND S. P. J. MATTHEWS

(ii) Hilbert matrix-

(4.1) H1j = 1/(i + j-1).

In this problem, the initial matrix is well-conditioned and the target matrix is very
ill-conditioned, being numerically singular to this precision for any dimension
greater than about 12.

(iii) Pascal matrix-

Sil = 19 1 < i< n ,
(4.2) Sij = 0, <j,

Sij = Si-i,j + Si-,ijl, j < i, i > lj > 1.

This target matrix is a lower triangular matrix whose rows consist of the rows of a
Pascal triangle. The main features of this matrix are that it is extremely ill-condi-
tioned and has very large elements, e.g., for n = 20 the largest element is 1.8105.

(iv) Wilkinson matrix

Wu = -a, i >j, 1 <j < n,
(4.3) Wij= a, j= i,j = n, 1 < i < n,

Wij = 0, otherwise.

This matrix is essentially that given by Wilkinson [5] as an example of a matrix for
which maximum growth occurs when Gaussian elimination with partial pivoting is
used. For all results we have used the value a = 1.1.

The results are presented in terms of certain quantities:
EMAX- maximum error in the factors of A* defined by

(4.4) EMAX = max 1E1J1, E = P*A*Q*T - L*U*.
i J

AVDEPTH-Average depth of pivots chosen, taken over all pivot choices. Since
the disruption of the Hessenberg structure is roughly proportional to r k + Sk we
define the "depth" of a pivot to be

(4.5) dk = rk + Sk1

MAXDEPTH- Deepest pivot selected during the updating process.
OPCOUNT- Total number of operations (that is one '+' and one '*') taken by

the pivot search and the elimination procedures to complete the updates.
OPTIME-We wish to compare the cost of updating the factors with that of

calculating them ab initio. Since the organization of the latter calculation is consider-
ably simpler, comparing operation counts does not tell the entire story. Hence, for
some results, we also present the CPU time taken by the algorithm in milliseconds.
All the above quantities (except EMAX) are taken over all m updates, where m is
defined at the start of this section.

Our first test aims to obtain some experience of the effect of pivot depth on
stability and efficiency for this class of test problems. It uses the above test problems
with n = 20, m = 50 and random matrices of full rank. These problems are solved
using the algorithm with the simple pivot test in which the pivot arksk is selected

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 481

where

(4.6) 0(rk, Sk) < 0(r, s) Vr, s such that r + s - 1 < MAXDEPTH,

where we have preset a value for MAXDEPTH. The results from these tests are
tabulated in Table 4.1. From these results it can be seen that although a certain
freedom in pivoting greatly improves the accuracy of the results, a break even point
is quickly reached and deeper pivot searches do not return better results. Indeed,
there is some evidence in the MAXDEPTH = 40 entries that the extra computation
associated with deep pivots causes errors to increase. Also the prohibitive cost of
comparing all possible pivots is demonstrated by the fact that the ratio

(AVDEPTH for MAXDEPTH = 40/AVDEPTH for MAXDEPTH =4) 2.5,

whereas

(OPCOUNT for MAXDEPTH = 40/OPCOUNT for MAXDEPTH =4) 15.

We are therefore motivated to derive a pivot selection criterion which dis-
criminates against deep pivots, whilst allowing them in very occasional extreme
circumstances. After evaluating several possibilities, we have selected a heuristic
based on two constants, 13 and y. A pivot ars is judged to be 'satisfactory' if either

(4.7) (a) r < pk. s < qk and O(r, s) fi, or
(b) O(r, s) < 13 . search depth and r + s - 1 < search depth.

Test (a) allows any pivot for which no additional fill in is generated, and the
associated growth bound is no worse than P. In test (b) search depth is initially one,
and is then increased until either a satisfactory pivot is discovered, or all possible
pivots have been tested. If no element satisfies test (4.7) we terminate if the reduced
matrix is zero, and if not, we select the element with minimum O(r, s).

TABLE 4.1
Effect of 50 updates on 20 X 20 matrices

Target Matrix Random Hilbert Pascal Wilkinson
rank n

MA XDEPTH
1 9.1110-4 1.4110-4 2.4910-2 1.5610i
2 4.2210-6 3.5310-6 3.9110-3 4.2810-i

EMAX 3 3.2710-6 1.5310-6 1.4610-2 1.7610-6
4 3.4510-6 1.6010-6 5.4310- 3 2.2810-6

40 5.8710-5 3.9810-5 2.3710-2 9.1510-6

1 438 438 438 438
2 552 575 579 565

OPCOUNT 3 790 825 796 783
x10-2 4 1012 1035 1061 1017

40 15540 15843 15857 15636

1 1.000 1.000 1.000 1.000
2 1.430 1.517 1.539 1.469

AVDEPTH 3 2.185 2.324 2.206 2.177
4 2.631 2.712 2.720 2.636

40 7.007 7.313 7.502 7.214

482 R. FLETCHER AND S. P. J. MATTHEWS

TABLE 4.2

Effect of different parameter selections in test (4.7)

Target Matrix Random Hilbert Pascal Wilkinson rank n

< IY
1.0 1.0 8.6810-6 3.9610-6 1.2910-2 5.1710-5
1.0 1.5 3.2010-6 1.971Q-6 5.3710-3 3.1610-6

EMAX 1.5 1.3 3.6510-6 3.6310-6 9.8210-3 1.2810-6
2.0 1.5 4.2610-6 3.1710-6 7.8110-3 4.2910-6
2.0 3.0 7.0710-6 8.1910-6 8.3310-3 5.7610-6

1.0 1.0 3877 4955 4210 4623
1.0 1.5 558 1033 559 582

OPCOUNT 1.5 1.3 545 1138 592 557
x 10-2 2.0 1.5 496 801 515 533

2.0 3.0 480 580 475 490

1.0 1.0 1244 1610 1436 1512
1.0 1.5 134 320 136 147

OPTIME 1.5 1.3 121 339 150 119
x 10o' 2.0 1.5 105 229 109 111

2.0 3.0 102 143 102 101

1.0 1.0 4.895 5.676 4.724 5.247
1.0 1.5 1.431 2.105 1.433 1.484

AVDEPTH 1.5 1.3 1.444 2.192 1.531 1.468
2.0 1.5 1.265 1.817 1.322 1.381
2.0 3.0 1.175 1.404 1.165 1.222

1.0 1.0 25.9 28 24 23
1.0 1.5 5.3 14 8 5

MAXDEPTH 1.5 1.3 6.0 17 8 6
2.0 1.5 4.6 13 6 6
2.0 3.0 3.3 7 4 3

The results in Table 4.2 are obtained by solving the same problem set as for Table
4.1 using a selection of (,f, y) pairs. From these results we can observe that EMAX
is relatively insensitive to the parameter choice. The choice (fi, y) = (1, 1) usually
causes extensive pivot searches to occur, because y = 1 gives no weight to deeper
pivots. The error EMAX is seen to be satisfactory in all cases. (It should be noted
that the errors in the Pascal matrix are substantially larger because they are relative
to matrix elements with maximum size 1.8105. The relative error for this problem is
in fact = 10-5, which is quite reasonable for an error over 50 complete rank one
updates.) With regard to OPTIME and OPCOUNT, it can be seen that except for
the Hilbert matrix problem, the cost of pivoting over a sequence of updates is very
small. In particular, a comparison with the results for Bennett's algorithm (that is,
MAXDEPTH = 1 in Table 4.1) shows that the introduction of pivoting into the
algorithm increases the computational cost by only a modest factor. For the Hilbert
matrix problem, and also for other highly rank deficient problems, we observe that
there is an extra cost, and this is due to the selection of deeper pivots (see
AVDEPTH). However, this deeper pivoting is not necessary to retain small errors,
which suggests that the bound (3.2), on which O(r, s) is based, is over-pessimistic.
Comparing Tables 4.1 and 4.2 indicates that for these test problems a maximum

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 483

depth of three would be sufficient to ensure stability. Thus, we prefer to impose a
limit on depth, and inform the user when this limit is attained.

Although the choice is not critical, we suggest on the basis of Tables 4.1 and 4.2
that the algorithm is implemented with default values (13, y) = (2.0, 1.5) and
MAXDEPTH < 5. Using these values we now investigate the dependence of the
errors and costs of the algorithm with respect to m and n. We use the same set of
problems as above with m < 50, but consider the range of values n = 10, 20, 50. We
have also added a class of Random rank 5 problems to the experiment. The results
of these experiments are given in Table 4.3. It can be seen that no untoward
deterioration occurs as n is increased, and that the errors appear to increase at a rate
just slightly faster than the v rate which would be expected from statistical
considerations. The only exception to this is the 50 x 50 Wilkinson matrix for which
the error growth is slightly faster over the last few updates. Inspection of AVDEPTH
over these updates reveals a sharp rise as MAXDEPTH is repeatedly attained. This
suggests that the bound on MAXDEPTH should be relaxed, and if we increase
MAXDEPTH to a value of 7 the final EMAX is reduced to 2.61 -s. For the
extremely rank deficient matrices it can be seen that the bound on MAXDEPTH is
frequently attained, but the AVDEPTH shows no sharp increase and no untoward

TABLE 4.3
Effect on algorithm of varying n and m

n 10 20 50

Iteration (m) 1 5 50 1 5 50 1 5 50

EMAX 1.510-7 2.310-7 1.410-6 3.310-7 6.310-7 4.210-6 1.010-6 3.110-6 2.310-5
OPCOUNT 2.4 12 133 9.1 46 496 55 278 3056

Random OPTIME 0.3 3.1 35 1.9 9.3 105 9.3 47 546
rank n AVDEPTH 1.055 1.053 1.208 1.116 1.119 1.267 1.135 1.135 1.399

MAXDEPTH 1.3 1.9 3.3 2.0 2.6 4.4 2.5 3.3 5.0

EMAX 1.610-7 2.910-7 1.110-6 3.610-7 6.510-7 3.010-6 6.210-7 2.410-6 9.710-6
OPCOUNT 2.4 12 138 9.0 45 577 56 291 4322

Random OPTIME 0.3 2.6 40 1.8 9.1 142 11 52 913
rank 5 AVDEPTH 1.055 1.069 1.272 1.100 1.091 1.516 1.225 1.307 2.187

MAXDEPTH 1.3 2.0 4.9 1.8 2.3 5.0 2.7 3.6 5.3

EMAX 1.210-7 1.810-7 1.710-6 3.810-7 8.310-7 3.210-6 6.910-7 1.910-6 5.410-6
OPCOUNT 2.4 12 151 11 46 612 56 287 4630

Hilbert OPTIME 0 1.8 45 1.9 9.1 139 9.0 47 952
AVDEPTH 1.000 1.067 1.422 1.263 1.095 1.614 1.265 1.331 2.333

MAXDEPTH 1 2 5 3 3 5 3 4 5

EMAX 9.510-7 1.910-6 3.810-6 1.110-3 2.910-3 7.810-3 - - -

OPCOUNT 2.4 12 132 9.1 46 513 - - -

Pascal OPTIME 0 1.8 37 1.8 8.9 109 - - -

AVDEPTH 1.000 1.044 1.204 1.053 1.126 1.306 - - -

MAXDEPTH 1 2 4 2 3 5 - - -

EMAX 2.410-7 2.410-7 9.110-7 2.210-7 4.810-7 4.310-6 5.110-7 2.110-6 3.210-4
OPCOUNT 2.4 12 131 9.4 45 528 52 277 3477

Wilk- OPTIME 1.8 5.3 33 1.8 7.2 114 9.0 44 647
inson AVDEPTH 1.000 1.044 1.173 1.263 1.095 1.378 1.061 1.192 1.663

|MAXDEPTH 1 2 4 2 2 5 2 3 5

(All entries for OPCOUNT are X102 and for OPTIME X 10-1)

484 R. FLETCHER AND S. P. J. MATTHEWS

error growth occurs. The operation count increases at a rate of = 2.6n2 for all
well-behaved problems, and rises to a maximum observed value of 3.7n2 for the
50 x 50 Hilbert matrix. In all cases the CPU time taken by the algorithm is roughly
proportional to the operation count.

We can also use these results to obtain a comparison between the errors and costs
of our updating algorithm as against those for Gaussian elimination with partial
pivoting. For this purpose we have factorized the Hilbert matrices and the Random
full rank matrices using Gaussian elimination. These results are presented in Table
4.4. The quantity EMAX is defined as in Table 4.1, but OPCOUNT and OPTIME
are presented as a multiple of the average cost of performing the corresponding rank
one update in Table 4.3. The results show that for well-conditioned matrices a single
update of a 10 X 10 matrix is approximately the same cost as the ab initio
calculation. (This agrees with a direct comparison between the operation counts, i.e.,
2.6n2 = ?n3 * n = 8.) As n increases the updating process becomes steadily more
efficient. For the ill-conditioned Hilbert matrix the advantage is marginally smaller
due to the increased pivot depth.

We can- also compare our algorithm with the algorithms proposed in [4] for
updating orthogonal factors. The more efficient of these algorithms takes approxi-
mately 8n2 operations to complete an equivalent update, which indicates that
considerable savings can be made by using triangular factors together with the above
algorithm.

When coding our algorithm the storage requirements are firstly n2 + 3n locations
for the LU factors together with x and y, and secondly extra locations to store any
.subsequent fill in that occurs. With no limit on the pivot depth this would require an
additional n2 locations but if we preset a maximum pivot depth then only a very
small amount of extra storage is required. (E.g., if MAXDEPTH = 5 then an extra 9
storage locations must be reserved.) Another problem that must be considered when
coding is that of poor scaling, which can lead to underflow or overflow. To avoid
this, it is desirable to rescale the x and y vectors before performing the update so
that they are of comparable size.

As can be seen from Table 4.3 the errors in the updated factors are cumulative
and therefore it will eventually be necessary to reinvert to get back to the original A
matrix. However, in many applications-especially nonlinear problems-the calcu-
lated factors will be used to calculate some form of search direction and hence

TABLE 4.4
Ab initio calculation vs. updatedfactors

n Problem Random rank n Hilbert

EMAX 3.2810-8 3.7210-9
10 OPCOUNT 1.07 0.94

OPTIME 1.17 1.11

EMAX 1.0610-7 3.7210-9
20 OPCOUNT 2.49 2.02

OPTIME 2.45 1.89

EMAX 4.4110-7 3.7210-9
50 OPCOUNT 6.61 4.36

OPTIME 6.19 3.55

STABLE ALGORITHM FOR UPDATING TRIANGULAR FACTORS 485

determine the next rank one change. This introduces a self-correcting mechanism
into the algorithm and makes reinversion unnecessary.

If the original matrix X is altered by a rank k change, where k > 1, and we wish to
obtain the new factors in a single update, as opposed to k rank one updates, then
this can be done using a similar approach to that used in Section 2. The first step is
to use the initial factors and the rank k update to define matrices L1 and U"T E

7X(+ k), where L1 and U1 are Hessenberg matrices with k elements above and
below the diagonal. These matrices can be reduced to triangular form in exactly the
manner described in Section 2 for the general matrices X and Y.

In this paper we have described a practical algorithm for updating triangular
factors of matrices which requires considerably less computational effort than the
updating of corresponding orthogonal factors. Given the accuracy of the results
obtained using this algorithm, we feel that there are many applications in which this
additional efficiency can be exploited.

Acknowledgments. We wish to thank the Royal Commission for the Exhibition of
1851 and the New Zealand University Grants Committee for their financial support.

Department of Mathematical Sciences
University of Dundee
Dundee DD1 4HN, Scotland

1. J. M. BENNETT, "Triangular factors of modified matrices," Numer. Math., v. 7, 1965, pp. 217-221.
2. J. W. DANIEL, W. B. GRAGG, L. KAUFMAN & G. W. STEWART, "Reorthogonalization and stable

algorithms for updating the Gram-Schmidt QR factorization," Math. Comp., v. 30, 1976, pp. 772-795.
3. R. FLETCHER & S. P. J. MATTHEWS, Stable Modification of Explicit LU Factors for Simplex Updates,

Department of Mathematics Report NA/64, Dundee University, 1983.
4. P. E. GILL, G. H. GOLUB, W. MURRAY & M. A. SAUNDERS, "Methods for modifying matrix

factorizations," Math. Comp., v. 28, 1974, pp. 505-535.
5. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

